1,295 research outputs found

    Electron-phonon coupling in the conventional superconductor YNi2_2B2_2C at high phonon energies studied by time-of-flight neutron spectroscopy

    Full text link
    We report an inelastic neutron scattering investigation of phonons with energies up to 159 meV in the conventional superconductor YNi2_2B2_2C. Using the SWEEP mode, a newly developed time-of-flight technique involving the continuous rotation of a single crystal specimen, allowed us to measure a four dimensional volume in (Q,E) space and, thus, determine the dispersion surface and linewidths of the A1gA_{1g} (~ 102 meV) and AuA_u (~ 159 meV) type phonon modes for the whole Brillouin zone. Despite of having linewidths of Γ=10meV\Gamma = 10 meV, A1gA_{1g} modes do not strongly contribute to the total electron-phonon coupling constant λ\lambda. However, experimental linewidths show a remarkable agreement with ab-initio calculations over the complete phonon energy range demonstrating the accuracy of such calculations in a rare comparison to a comprehensive experimental data set.Comment: accepted for publication in PR

    Crystal Symmetry Lowering in Chiral Multiferroic Ba3_3TaFe3_3Si2_2O14_{14} observed by X-Ray Magnetic Scattering

    Full text link
    Chiral multiferroic langasites have attracted attention due to their doubly-chiral magnetic ground state within an enantiomorphic crystal. We report on a detailed resonant soft X-ray diffraction study of the multiferroic Ba3_3TaFe3_3Si2_2O14_{14} at the Fe L2,3L_{2,3} and oxygen KK edges. Below TNT_N (≈27K\approx27K) we observe the satellite reflections (0,0,τ)(0,0,\tau), (0,0,2τ)(0,0,2\tau), (0,0,3τ)(0,0,3\tau) and (0,0,1−3τ)(0,0,1-3\tau) where τ≈0.140±0.001\tau \approx 0.140 \pm 0.001. The dependence of the scattering intensity on X-ray polarization and azimuthal angle indicate that the odd harmonics are dominated by the out-of-plane (c^\mathbf{\hat{c}}-axis) magnetic dipole while the (0,0,2τ)(0,0,2\tau) originates from the electron density distortions accompanying magnetic order. We observe dissimilar energy dependences of the diffraction intensity of the purely magnetic odd-harmonic satellites at the Fe L3L_3 edge. Utilizing first-principles calculations, we show that this is a consequence of the loss of threefold crystal symmetry in the multiferroic phase

    A Systematic Review Examining the Experimental Methodology Behind In Vivo Testing of Hiatus Hernia and Diaphragmatic Hernia Mesh

    Get PDF
    INTRODUCTION: Mesh implants are regularly used to help repair both hiatus hernias (HH) and diaphragmatic hernias (DH). In vivo studies are used to test not only mesh safety, but increasingly comparative efficacy. Our work examines the field of in vivo mesh testing for HH and DH models to establish current practices and standards. METHOD: This systematic review was registered with PROSPERO. Medline and Embase databases were searched for relevant in vivo studies. Forty-four articles were identified and underwent abstract review, where 22 were excluded. Four further studies were excluded after full-text review-leaving 18 to undergo data extraction. RESULTS: Of 18 studies identified, 9 used an in vivo HH model and 9 a DH model. Five studies undertook mechanical testing on tissue samples-all uniaxial in nature. Testing strip widths ranged from 1-20 mm (median 3 mm). Testing speeds varied from 1.5-60 mm/minute. Upon histology, the most commonly assessed structural and cellular factors were neovascularisation and macrophages respectively (n = 9 each). Structural analysis was mostly qualitative, where cellular analysis was equally likely to be quantitative. Eleven studies assessed adhesion formation, of which 8 used one of four scoring systems. Eight studies measured mesh shrinkage. DISCUSSION: In vivo studies assessing mesh for HH and DH repair are uncommon. Within this relatively young field, we encourage surgical and materials testing institutions to discuss its standardisation

    Is It Time to Call Time on Bone Marrow Biopsy for Staging Ewing Sarcoma (ES)?

    Get PDF
    Primary malignant bone sarcomas are rare and Ewing sarcoma (ES), along with osteosarcoma, predominates in teenagers and young adults. The well-established multimodality treatment incorporates systemic chemotherapy with local control in the form of surgery, with or without radiation. The presence and extent of metastases at diagnosis remains the most important prognostic factor in determining patient outcome; patients with skeletal metastases or bone marrow infiltration having a significantly worse outcome than those with lung metastases alone. There is, however, no accepted staging algorithm for ES. Large cooperative groups and national guidelines continue to advocate bone marrow biopsy (BMB) for staging but functional imaging techniques, such as 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) with computerised tomography (CT) have been increasingly used for staging cancers and whole-body magnetic resonance imaging (WB-MRI) for staging skeletal metastases. This review outlines the current literature, from which we conclude that BMB is no longer required for the staging of ES as it does not influence the standard of care management. BMB may, however, provide prognostic information and insights into the biology of ES in selected patients on prospective clinical trials

    Psychological adaptation and recovery in youth with sarcoma: a qualitative study with practical implications for clinical care and research

    Get PDF
    Objectives: This study explored factors that play a role in psychological adaptation and recovery of young people with sarcoma. / Design: Qualitative study. / Setting: National Health Service hospitals in the UK. / Methods: Using purposive sampling, participants were recruited for semistructured interviews over the telephone or face to face in order to answer questions about how cancer impacted various domains of their life. Data were analysed using a framework approach. / Results: Thirty participants, aged 15–39 years with primary sarcoma diagnosis provided in-depth accounts of their experience. Emerging themes from the interviews were grouped into two overarching themes that relate to one’s adaptation to illness: individual level and environmental level. The qualitative nature of our study sheds light on meaningful connections between various factors and their role in one’s psychological adaptation to sarcoma. We devised a visual matrix to illustrate how risk and protective factors in adaptation vary between and within individuals. / Conclusions: This study demonstrates that young people with sarcoma report an array of both positive and negative factors related to their illness experience. The route to recovery is a multifactorial process and a one-size-fits-all approach to psychosocial care proves inadequate. We propose that moving beyond the latent constructs of resilience and psychopathology towards a dynamic model of psychological adaptation and recovery in this population can result in optimisation of care. We offer some recommendations for professionals working with young people with sarcoma in clinic and research

    High aerodynamic lift from the tail reduces drag in gliding raptors

    Get PDF
    Many functions have been postulated for the aerodynamic role of the avian tail during steady-state flight. By analogy with conventional aircraft, the tail might provide passive pitch stability if it produced very low or negative lift. Alternatively, aeronautical principles might suggest strategies that allow the tail to reduce inviscid, induced drag: if the wings and tail act in different horizontal planes, they might benefit from biplane-like aerodynamics; if they act in the same plane, lift from the tail might compensate for lift lost over the fuselage (body), reducing induced drag with a more even downwash profile. However, textbook aeronautical principles should be applied with caution because birds have highly capable sensing and active control, presumably reducing the demand for passive aerodynamic stability, and, because of their small size and low flight speeds, operate at Reynolds numbers two orders of magnitude below those of light aircraft. Here, by tracking up to 20,000, 0.3 mm neutrally buoyant soap bubbles behind a gliding barn owl, tawny owl and goshawk, we found that downwash velocity due to the body/tail consistently exceeds that due to the wings. The downwash measured behind the centreline is quantitatively consistent with an alternative hypothesis: that of constant lift production per planform area, a requirement for minimizing viscous, profile drag. Gliding raptors use lift distributions that compromise both inviscid induced drag minimization and static pitch stability, instead adopting a strategy that reduces the viscous drag, which is of proportionately greater importance to lower Reynolds number fliers

    Nonstandard smooth realizations of Liouville rotations

    Get PDF
    Abstract. We augment the C ∞ conjugation approximation method with explicit estimates on the conjugacy map. This allows us to construct ergodic volume-preserving diffeomorphisms measure-theoretically isomorphic to any a priori given Liouville rotation on a variety of manifolds. In the special case of tori the maps can be made uniquely ergodic. Introduction We call a diffeomorphism f of a compact manifold M that preserves a smooth measure µ a smooth realization of an abstract system (X, T, ν) if they are measure-theoretically isomorphic. A diffeomorphism of a compact manifold has finite entropy with respect to any Borel measure. The natural question therefore becomes whether every finite-entropy automorphism of a Lebesgue space has a smooth realization. This problem remains stubbornly intractable and there remain abstract examples that have no known smooth realizations. We seek to find smooth realizations of one of the simplest types of automorphisms: aperiodic automorphisms with pure point spectrum with a group of eigenvalues with a single generator. Such automorphisms are measure-theoretically isomorphic to irrational rotations of the circle. They therefore have a natural smooth realization. We seek smooth realizations on manifolds other than T. Such realizations are called non-standard smooth realizations. We extend the conjugation approximation method of Anosov and Katok [1] to construct non-standard smooth realizations of a given Liouville rotation on T on a variety o

    Chronic Stress Prevents Cortico-Accumbens Cue Encoding and Alters Conditioned Approach

    Get PDF
    Chronic stress impairs the function of multiple brain regions and causes severe hedonic and motivational deficits. One brain region known to be susceptible to these effects is the PFC. Neurons in this region, specifically neuronal projections from the prelimbic region (PL) to the nucleus accumbens core (NAcC), have a significant role in promoting motivated approach. However, little is known about how activity in this pathway changes during associative learning to encode cues that promote approach. Less is known about how activity in this pathway may be altered by stress. In this study, an intersectional fiber photometry approach was used in male Sprague Dawley rats engaged in a Pavlovian autoshaping design to characterize the involvement of the PL-NAcC pathway in the typical acquisition of learned approach (directed at both the predictive cue and the goal), and its potential alteration by stress. Specifically, the hypothesis that neural activity in PL-NAcC would encode a Pavlovian approach cue and that prior exposure to chronic stress would disrupt both the nature of conditioned approach and the encoding of a cue that promotes approach was tested. Results of the study demonstrated that the rapid acquisition of conditioned approach was associated with cue-induced PL-NAcC activity. Prior stress both reduced cue-directed behavior and impaired the associated cortical activity. These findings demonstrate that prior stress diminishes the task-related activity of a brain pathway that regulates approach behavior. In addition, the results support the interpretation that stress disrupts reward processing by altering the incentive value of associated cues

    Bird wings act as a suspension system that rejects gusts

    Get PDF
    Musculoskeletal systems cope with many environmental perturbations without neurological control. These passive preflex responses aid animals to move swiftly through complex terrain. Whether preflexes play a substantial role in animal flight is uncertain. We investigated how birds cope with gusty environments and found that their wings can act as a suspension system, reducing the effects of vertical gusts by elevating rapidly about the shoulder. This preflex mechanism rejected the gust impulse through inertial effects, diminishing the predicted impulse to the torso and head by 32% over the first 80 ms, before aerodynamic mechanisms took effect. For each wing, the centre of aerodynamic loading aligns with the centre of percussion, consistent with enhancing passive inertial gust rejection. The reduced motion of the torso in demanding conditions simplifies crucial tasks, such as landing, prey capture and visual tracking. Implementing a similar preflex mechanism in future small-scale aircraft will help to mitigate the effects of gusts and turbulence without added computational burden

    Spin dynamics simulations of the magnetic dynamics of RbMnF3_3 and direct comparison with experiment

    Full text link
    Spin-dynamics techniques have been used to perform large-scale simulations of the dynamic behavior of the classical Heisenberg antiferromagnet in simple cubic lattices with linear sizes L≤60L\leq 60. This system is widely recognized as an appropriate model for the magnetic properties of RbMnF3_3. Time-evolutions of spin configurations were determined numerically from coupled equations of motion for individual spins using a new algorithm implemented by Krech {\it etal}, which is based on fourth-order Suzuki-Trotter decompositions of exponential operators. The dynamic structure factor was calculated from the space- and time-displaced spin-spin correlation function. The crossover from hydrodynamic to critical behavior of the dispersion curve and spin-wave half-width was studied as the temperature was increased towards the critical temperature. The dynamic critical exponent was estimated to be z=(1.43±0.03)z=(1.43\pm 0.03), which is slightly lower than the dynamic scaling prediction, but in good agreement with a recent experimental value. Direct, quantitative comparisons of both the dispersion curve and the lineshapes obtained from our simulations with very recent experimental results for RbMnF3_3 are presented.Comment: 30 pages, RevTex, 9 figures, to appear in PR
    • …
    corecore